
Optimization with State Space Approaches II:
System Theoretic Concepts per Example

M. Neumayer and G. Steiner
Institute of Electrical Measurement and Measurement Signal Processing

Kopernikusgasse 24/IV, A-8010 Graz, Graz University of Technology, Austria
Email: neumayer@tugraz.at

Abstract—The development and hence the number of deter-
ministic, stochastic and/or hybrid optimization algorithms has
seen a rigorous grow in the past years and is still of major concern
in the optimization community. In system and control theory
engineers use state space models as an unified basis for analysis
and design tasks. In this paper the advantageous use of state space
techniques for optimization is demonstrated on two examples. In
particular the handling of models errors due to reduced models
and a hybrid optimization algorithm are presented.

I. INTRODUCTION

In the past years an enormous variety of different determin-
istic, stochastic or hybrid labeled optimization algorithms has
grown up in the optimization community, making a distinction
between the different concepts more difficult and, more impor-
tant, the selection of a suitable and efficient algorithm often
hard. This work builds the practical extension to its companion
paper [1], where the use of state space models and methods for
optimization is proposed. State space models provide a unified
representation of dynamic systems. Considering optimization
algorithms as dynamic systems, the approach provides the
facility of a framework for comparative analysis and the design
of new algorithms. Further, advantageous techniques of state
estimation and control can be employed. In this paper, we
demonstrate the use of state space techniques for optimization
by two examples.

II. A RESISTOR NETWORK PROBLEM

(a) Resistor net.
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(b) Objective function Ψ.

Fig. 1. Test example and solutions.

Figure 1(a) depicts a resistor network, which will be the
basis for all demonstrations. The black lines represent resistors
of 1 Ω. The gray resistors lines form a circular object of radius
r and have the resistor value R2. It is aim to determine the
radius r and the resistor value R2 by boundary measurements.

As the mapping of the circle is done using the center coor-
dinates of the resistors, the problem is discontinuous for the
variable r. To take boundary measurements, a voltage source
is connected to the upper left corner of the network and several
current measurements are taken on some points on the lower
edge, take obtain the current distribution. Hence, for the state
vector x =

[
r R2

]T
the measurement vector is given by

y =
[
I1 . . . IN

]T
. Figure 1(b) depicts the typical shape

of the two dimensional objective function

Ψ(x) = (y − ytrue)
T (y − ytrue), (1)

in the region near the solution xtrue. ytrue collects the
currents of the true model. In our example the parameters
were set to R2 = 0.5 Ω and r = 0.5 m. The corner length of
the network was 2 m.

III. TWO EXAMPLES

A. Handling Errors of Reduced Models

Recently, in order the decrease the computational load
due to complex forward models, the use of approximated or
reduced forward models has become more and more popular
in optimization [2]. E.g. a simple reduction technique is given
by the use of a coarser finite element discretization. However,
this has also an effect on the objective function Ψ(x), which
is now replaced by the objective function Ψ∗(x) due to the
reduced model. As the reduced model may have different
characteristics compared to reality, the reduction has to be
handled carefully. Similar to the so-called enhanced error
model [3], the following equation can be established

Ψ∗(x) = Ψ(x) + (Ψ∗(x)−Ψ(x)) = Ψ(x) + v(x). (2)

Hence, the model error v(x) can be understood as an additive
error term. Although v(x) is a strictly deterministic term, it
is common to treat such errors like random variables and
approximate them by means of a Gaussian distribution [3]
using a mean µv and a covariance Σv . In general their
determination would require a sampling procedure. However,
during the setup period of the model mostly information about
its error (or uncertainty) comes to hand, which can be used to
characterize v(x). Now, Bayes’ law

π(x|y) =
π(y|x)π(x)

π(y)
∝ π(y|x)π(x), (3)



can be applied to compute the posteriori probability π(x|y).
As π(x) can be understood as a function which holds the
constraints, the likelihood function π(y|x) is given by

π(y|x) ∝ exp
(
−(Ψ∗ − µv)TΣ−1

v (Ψ∗ − µv)
)

(4)

builds an equivalent to the objective function. Figure 2(a)
depicts a coarse resistor network which is used for estimating
x out of measurements of the fine resistor network depicted
in Figure 1(a). The objective function Ψ∗ is depicted in
Figure 2(b). The reduction is already too rough and it would
be impossible to obtain the right result out of Ψ∗. By applying
the enhanced error approach in combination with Bayes law,
one can obtain Figure 2(c), where the probability π(r,R2) is
depicted. Out of this, the solution can be found, which matches
the true values. It will practically not happen, that the reduction

(a) Reduced resistor
net.
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(b) Objective function Ψ∗.
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(c) Posteriori probability π(r,R2).

Fig. 2. Determination of r and R2 using a reduced model.

is as rough like the one in the example. However, the example
illustrates the increased possibility of the approach.

B. A Hybrid Optimization Scheme.

As a second example we want to present a hybrid ver-
sion of the steepest descent algorithm. Again, we want use
the reduced model depicted in figure 2(a). As explained in
[1], deterministic optimization algorithms have similarities to
feedback loops. For the steepest descent algorithm, the control
variables are given by uk = −sg(xk), where g(xk) denotes
the gradient of the objective function and s is a step width.
As Ψ is discontinuous for the variable r, we will now treat
its component of the gradient as random variable. Hence,
a hybrid optimization algorithm can be obtained. For the
optimization, we use a particle filter [4]. The principle of this
state estimator is similar to optimization methods like Particle

Swarm Optimization, or differential evolution. In a first step
several proposal candidates are generated. After evaluating
their fitness a resampling procedure is performed. Then the
procedure is repeated for the resampled candidates. Figure 3(c)
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(a) Objective function.
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(b) Posteriori probability.
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(c) Particles exploring the func-
tion.

Fig. 3. Output of the particle filter.

depicts particles of the particle filter at an initial time step
exploring the function space. Figure 3(a) and 3(b) depict the
trend of the objective function and the posteriori distribution.
The particle filter is able to find the right solution after few
iterations.

IV. CONCLUSION

In this paper two examples of using state space methods and
concepts for optimization and their potential are presented.
Example one focused on the ability to use reduced models
in combination with an error model. Example two presented
a hybrid optimization concept, where the steepest descent
algorithm was implemented as state space system. The final
paper will present more details about the implementations, as
well as some further details concerning the application of state
space techniques for optimization.
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